学习册 —— 书山有路勤为径,学海无涯苦作舟!

学习册 / 2019中考 / 数学 / 正文

2018年海南省中考数学试卷真题与答案(七)

来源:学习册发布日期:2019-01-22

三、解答题(本大题满分62分)

24.(15分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0)。

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标。

 

【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;

(2)①连接CD,则可知CD∥x轴, 由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角, 则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标; 当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k 1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标。

【解答】解:

(1)由题意可得,解得

∴抛物线解析式为y=﹣x2+2x+3;

(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴F(1,4),

∵C(0,3),D(2,3),

∴CD=2,且CD∥x轴,

∵A(﹣1,0),

∴S四边形ACFD=S△ACD+S△FCD=×2×3+ ×2×(4﹣3)=4;

②∵点P在线段AB上,

∴∠DAQ不可能为直角,

∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°

i.当∠ADQ=90°时,则DQ⊥AD,

∵A(﹣1,0),D(2,3),

∴直线AD解析式为y=x+1,

∴可设直线DQ解析式为y=﹣x+b′,

把D(2,3)代入可求得b′=5,

∴直线DQ解析式为y=﹣x+5,

联立直线DQ和抛物线解析式可得, 解得

∴Q(1,4);

ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),

设直线AQ的解析式为y=k1x+b1

把A、Q坐标代入可得,解得k1=﹣(t﹣3),

设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,

∵AQ⊥DQ,

∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=

当t=时,﹣t2+2t+3=

当t=时,﹣t2+2t+3=

∴Q点坐标为()或 ();

综上可知Q点坐标为(1,4)或()或()。
Copyright © 2019-2020 xuexice.cn All right reserved. 学习册 版权所有